Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer ; 129(12): 1885-1894, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36951119

RESUMO

BACKGROUND: Immune-related adverse events (irAEs) associated with immune checkpoint inhibitors (ICIs) are often managed via immunosuppressive agents (ISAs); however, their impact on ICI efficacy is not well studied. The impact of the use of ISAs on ICI efficacy in patients with advanced melanoma was therefore investigated. METHODS: This is a real-world, multicenter, retrospective cohort study of patients with advanced melanoma who received ICIs (n = 370). Overall survival (OS) and time to treatment failure (TTF) from the time of ICI initiation were compared among patients in subgroups of interest by unadjusted and 12-week landmark sensitivity-adjusted analyses. The association of irAEs and their management with OS and TTF were evaluated using univariate and multivariable Cox proportional hazards regression models. RESULTS: Overall, irAEs of any grade and of grade ≥3 occurred in 57% and 23% of patients, respectively. Thirty-seven percent of patients received steroids, and 3% received other ISAs. Median OS was longest among patients receiving both (not reached [NR]), shorter among those receiving only systemic steroids (SSs) (84.2 months; 95% CI, 40.2 months to NR), and shortest among those who did not experience irAEs (10.3 months; 95% CI, 6-20.1 months) (p < .001). Longer OS was significantly associated with the occurrence of irAEs and the use of SSs with or without ISAs upon multivariable-adjusted analysis (p < .001). Similar results were noted with anti-programmed death 1 (PD-1) monotherapy and combination anti-PD-1 plus anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) therapy, and with 12-week landmark sensitivity analysis (p = .01). CONCLUSIONS: These findings in patients with melanoma who were treated with ICIs suggest that the use of SSs or ISAs for the management of irAEs is not associated with inferior disease outcomes, which supports the use of these agents when necessary.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Estudos Retrospectivos , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunossupressores/uso terapêutico , Melanoma/tratamento farmacológico , Modelos de Riscos Proporcionais
2.
Cell Commun Signal ; 17(1): 24, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885209

RESUMO

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) results in changes that promote de-differentiation, migration, and invasion in non-small cell lung cancer (NSCLC). While it is recognized that EMT promotes altered energy utilization, identification of metabolic pathways that link EMT with cancer progression is needed. Work presented here indicates that mesenchymal NSCLC upregulates glutamine-fructose-6-phosphate transaminase 2 (GFPT2). GFPT2 is the rate-limiting enzyme in the synthesis of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the obligate activator of O-linked N-acetylglucosamine transferase (OGT). METHODS: Analysis of our transcriptomic data indicates that GFPT2 is one of the most significantly upregulated metabolic genes in mesenchymal NSCLC. Ectopic GFPT2 expression, as well as gene silencing strategies were used to determine the importance of this metabolic enzyme in regulating EMT-driven processes of cell motility and invasion. RESULTS: Our work demonstrates that GFPT2 is transcriptionally upregulated by NF-κB and repressed by the NAD+-dependent deacetylase SIRT6. Depletion of GFPT2 expression in NSCLC highlights its importance in regulating cell migration and invasion during EMT. CONCLUSIONS: Consistent with GFPT2 promoting cancer progression, we find that elevated GFPT2 expression correlates with poor clinical outcome in NSCLC. Modulation of GFPT2 activity offers a potentially important therapeutic target to combat NSCLC disease progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Sirtuínas/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Transdução de Sinais , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...